文件编号: 版本号: V2.0

受控状态:

分发号:

物质科学公共实验平台

质量管理文件

原位 X 射线衍射仪 标准操作规程

2021 年 8 月 26 日发布

年 月 日实施

物质科学公共实验平台 发布

With

修订页

修订日期	版本号	修订说明	修订	审核	批准
2021 5 19	V1.0	修订说明 发布试行 发布试行	缪晓和		
2021.3.18	V1.0	及印试门	钟影		
2021.9.26	V2.0	出本计行	缪晓和		
2021.8.20	V2.0	又们因门	钟影		
				Ţ	7.
					\bigcirc
					×
			X		
			/		
		-ZAV			
EXT.					

With

目	录

1. 目的	.1
2. 范围	.1
3. 职责	.1
4. X 射线衍射实验室安全管理规范	.1
5. 原位 X 射线衍射设备管理规范	.2
5.1. 原位 X 射线衍射仪 Bruker D8 Discover 使用制度	.2
5.2. 预约制度	.2
5.3. 培训考核制度	.3
5.4. 仪器故障报告	.4
5.5. 致谢	.4
6. 原位 X 射线衍射仪 Bruker D8 Discover 标准操作步骤	.5
6.1. 介绍	.5
6.2. 仪器主要技术参数	.5
6.3. 样品要求	.7
6.4. 开机	.7
6.5. 高低温原位测试(-150 ℃~1500 ℃)	.9
6.6. 低温原位测试(12K~320K)	20
6.7. 高分辨测试	26
6.8. 数据格式转换	31
7. 相关/支撑性文件	32
8. 记录	32
仪器设备使用记录本	33

WHAT

1. 目的

建立原位 X 射线衍射仪 Bruker D8 Discover 标准使用操作规程,使其被正确、规范地使用。

2. 范围

本规程适用于所有使用原位 X 射线衍射仪 Bruker D8 Discover 的用户。

3. 职责

3.1. 用户:严格按本程序操作,发现异常情况及时汇报实验室技术员。

3.2. 实验室技术员:确保操作人员经过相关培训,通过考核,并按本规程进行操作。

4. X 射线衍射实验室安全管理规范

4.1. 进入实验室的所有师生应熟悉消防安全基本知识、化学危险品安全知识、用电/ 用水/用气常识。

4.2. 严格遵守 X 射线衍射实验室的各项安全管理规范, 注意警示标识。

4.3. 实验室仪器需经培训考核后方可操作,并严格遵守仪器常规操作流程进行实验, 未经考核者严禁使用;严禁未经允许进行非 SOP 中规定的其他操作,或擅自修改仪器、 使用非指定部件,或在拆下安全装置的情况下操作仪器。

4.4. 严禁在原位 X 射线衍射仪操控电脑主机上使用 USB 拷贝数据, 严禁私自接入网络。

4.5. 用户上机实验必须严格按照操作规程进行,实验室技术员应经常巡视,及时纠 正违规操作,消除安全隐患;实验做完后整理好实验相关区域并做好实验记录。

4.6. 样品制备、装送样品时必须戴手套,禁止直接用手触摸样品台及样品架。为防止交叉污染,严禁戴手套操作鼠标、键盘,同时严禁戴手套开关门。

4.7. 保持实验工作区域整洁,相关工具放置在指定位置;严禁摆放与实验无关的个 人物品,严禁在实验室饮食与抽烟。

4.8. 严格遵守学校规章制度,有毒废物、试剂、器皿、利器等分类回收。

4.9. 实验室人员离开前必须认真检查实验室的电是否关闭,离开时随手关门。

4.10. 仪器操作过程中出现设备故障、异响、异味、冒烟等异常现象时,请第一时间 联系实验室技术员,不得擅自修理设备。

4.11. 夜间 22:00-次日 8:00 测试,必须两人结伴操作;因违规操作或其他失误造 成安全事故,相关责任人将受到通报批评及相应处罚。

4.12. 实验人员操作过程中严禁触碰到探测器的表面。

5. 原位 X 射线衍射设备管理规范

5.1. 原位 X 射线衍射仪 Bruker D8 Discover 使用制度

该仪器遵从学校"科研设施与公共仪器中心"对大型仪器设备实行的管理办法和"集中投入、统一管理、开放公用、资源共享"的建设原则,面向校内所有教学、科研单位 开放使用;根据使用机时适当收取费用;并在保障校内使用的同时,面向社会开放。

原位 X 射线衍射仪 Bruker D8 Discover(以下简称 in-situ XRD)使用方案分为五类:

(1)培训测试:用户提出培训申请,技术员安排培训。培训时需用户准备样品并制样,培训内容包括:实验室规章制度说明、in-situ XRD基本原理、硬件构造及各部分功能、常规样品制样、仪器的标准操作流程、控制软件(Diffrac.Management, EVA)操作、数据处理及测试注意事项。该过程中用户在技术员指导下进行仪器操作并进行数据处理。

(2) 自主测试-初级:用户独立制样、装样;独立操作 in-situ XRD 进行常规粉末衍 射数据采集,并进行数据处理及上传。

(3) 自主测试-中级:用户独立制样、装样;独立操作 in-situ XRD 进行平行光模式 下的数据采集,并进行数据处理及上传。

(4) 自主测试-高级:用户独立制样、装样;独立操作 in-situ XRD 进行原位数据采集,并进行数据处理及上传。

(5) 送样测试:用户预约时提供样品信息及测试要求;用户负责制样,技术员操作 仪器并做基本数据处理;

该仪器的使用实行预约制度,请使用者根据样品的测试要求在学校"大型仪器共享管 理系统"(以下简称大仪共享)进行预约,并按照要求登记预约信息。

5.2. 预约制度

为充分利用仪器效能、服务全校科研工作,根据测试内容与时间的不同,X射线衍 射实验室制定了 7*24 小时预约制度。预约原位实验,根据预约制度可登陆大仪共享网 站最少提前3周与设备负责人沟通并预约机时,原位实验安排在工作日进行构建与测量。

请严格遵守预约时间使用仪器,以免浪费机时。如需调换时间段,在技术员同意下 可与其他使用者协商。因故不能在预约时间内测试者,请提前一天与技术员沟通并取得 同意后取消预约。如无故不遵预约时间,将被取消一个月的预约资格。

〕	须约时段	预约时间/每人	测试内容		
工作时间 (周一至周五)	09:00 至 17:30	每人次可预约机时≥1h	自主测试,送样测试		

(1) 校内使用者须经过技术员的实验操作培训,考核合格后方可上机使用;

(2) 实验开始时务必在实验记录本上登记,结束时如实记录仪器状态;

(3) 用户必须在登录状态下才可以接触平台仪器,否则,视为违规,平台将采取双 倍使用机时进行计费的措施进行处罚。

(4) 严禁擅自处理、拆卸、调整仪器主要部件。使用期间如仪器出现故障,使用者须及时通知技术员,以便尽快维修或报修,隐瞒不报者将被追究责任,加重处理;

(5) 因人为原因造成仪器故障 (如硬件损坏), 其导师课题组须承担维修费用;

(6) 不可擅自做除培训操作之外的测试,如有需求请务必联系技术员;

(7) in-situ XRD 数据不允许在仪器电脑中删改,尤其不允许用 U 盘与移动硬盘直接 拷贝。测试数据已实时自动同步到 172.16.75.69,使用者应根据要求下载原始数据至本 地电脑,以保存并做数据处理;实验数据在本实验室电脑中保留 2 个月(暂定,根据情 况若硬盘允许数据保存时间延长)。

(8)使用者应保持实验区域的卫生清洁,测试完毕请及时带走样品,本实验室不负责保管样品。使用者若违犯以上条例,将酌情给予警告、通报批评、罚款及取消使用资格等惩罚措施。

5.3. 培训考核制度

校内教师、研究生均可提出预约申请,由技术员安排时间进行培训,培训分为三部分:

第一部分:由实验室负责人或仪器负责人介绍实验室规章制度、安全管理规范、 仪器设备原理、基本硬件知识。

第二部分: 上机培训,内容包含: 样品送样及制样、仪器标准操作规程(自主测试-初、中、高级 SOP)、相应数据处理。

第三部分:上机培训结束后,培训者需在一周内进行至少两次自主上机预约,在 仪器负责人的监督下进行独立操作。

实验室技术员认为培训者达到相应级别的独立操作水平后,给予培训者授权在相 应级别所允许的可操作实验范围内独立使用仪器。如果在各级别因为人为操作错误导致 仪器故障者,除按要求承担维修费用之外,给予降级重考惩罚、培训费翻倍。

内部文件,请勿随意转发、打印、复印

注意:培训中的第一部分和第二部分需要用户在一周内完成(特殊情况除外),否则 需要重新进行培训;培训通过后用户需保证每月至少1次的自主上机测试,若超过该时 间需要重新联系仪器负责人监督考核,否则将无法预约该仪器设备。

对接受培训人员的核心要求:

(1) 熟悉 in-situ XRD 原理、构造及各部分的功能,严格遵守仪器部件的注意事项, 在突然停电时能及时处理仪器并上报,关注仪器各部件有无异常;

(2) 熟练掌握 in-situ XRD 以及数据格式转换系统,严格按照标准操作规程操作, 防止因人为操作不当造成仪器故障,认真做好 in-situ XRD 的使用及故障记录。

5.4. 仪器故障报告

(1) 仪器使用过程中, 仪器出现故障及错误提示信息时: 应即时通知技术员;

(2) 请在第一时间将故障及错误提示信息截屏,并保存在桌面"Error Report"文件夹, 截屏文件命名请按照"导师名-用户名-样品名-故障时间(具体到分钟)"; 在《仪器设备使 用记录本》的备注栏做简单说明。

5.5. 致谢

使用物质科学公共实验平台的仪器设备、或得到平台技术人员的支持协助,获得相应成果后,应在发表的文章中对平台予以致谢,并及时反馈至平台 lhpt@westlake.edu.cn。 建议致谢方式参见 <u>https://iscps.westlake.edu.cn/info/1129/1462.htm</u>, "The author thanks (Dr. XXX from) Instrumentation and Service Center for Physical Sciences at Westlake University for (the assistance/discussion/supporting in) XXX measurement/data interpretation."。 6. 原位 X 射线衍射仪 Bruker D8 Discover 标准操作步骤

6.1. 介绍

仪器型号: Bruker D8 Discover

产地:德国

基本信息: 原位 X 射线衍射仪包含主机(包括光源、光学系统、检测器)、水冷系统、 变温池、控温装置。此仪器可实现 12 K~1500 ℃的 in-situ XRD 测试,还能切换成 GID、 HRXRD 模式。

放置地点:西湖大学云栖校区4号楼112X射线衍射实验室

6.2. 仪器主要技术参数

原位 X 射线衍射仪 Bruker D8 Discover (简称 in-situ XRD) 配有:

TRIO 三光路自动切换:

- a) 自动狭缝: 传统的 Bragg-Brentano 聚焦几何-粉末样品;
- b)Göbel镜:高强度的平行光几何-GID、XRR、透射-表面高低不平样品;
- c)Göbel镜+2次反射单色器:高分辨平行光Kαl几何(HRXRD)-单晶外延

膜(RC、2theta-omega、Phi-Scan、RSM)

6 kW Cu 转靶光源; ____

Eiger 二维探测器: 500K 像素

测角仪:采用光学编码器技术与步进马达双重定;立式垂直测角仪;转动范围 不小于-10°~100°;精度 0.0001°;最小步长 0.0001°;

变温池(12 K~1600 ℃)

原位 X 射线衍射仪 Bruker D8 Discover 主要组成部分如下,如图 6-1 所示:

图 6-1 原位 X 射线衍射仪 Bruker D8 Discover 主机图示

图 6-2 原位 X 射线衍射仪 Bruker D8 Discover 控温装置

6.3. 样品要求

(1) 不测试含有毒性、腐蚀性样品;

- (2) 粉末样品要求: 粒度均匀, 粒径小于 20 µm, 粉末样品量约需 1 g;
- (3) 微粉样品需要颗粒均匀细小(50 nm 以上), 且物质性质稳定;
- (4) 块状样品要求:测试面清洁平整,可以是板状、片状或丝状,带衬底材料的薄膜或带基材的镀层等,样品形状尺寸需要与技术员沟通确认;
- (5)委托测试请告知测量的角度范围(20扫描范围5°~100°之间)、样品组成成分及所含的元素种类;
- (6) 易变质样品需提前与技术员联系,预约测试时间。
- (7) 请注明样品保存条件,如常规、冷冻、干燥、冷藏、避光等;
- 6.4. 开机

图 6-3 水冷机温度及水压示意图

6.4.1 打开冷却水循环装置

此机器设置温度在 22±2℃,一般温度不超过 24℃,水压稳定在 0.43 MPa 即可 正常工作(图 6-3 所示)。若高于此示数,请报告给技术员。

6.4.2 开电源

在衍射仪左侧面,将主切断开关(红色旋钮)从"O"旋转到"I"的位置,将绿色 按钮按下,此时机器开始启动和自检;启动完毕后,仪器主机左侧面高压指示灯显示为 白色,仪器状态指示灯为绿色(注意:绿色表示仪器主机与控制电脑间通讯良好;若电 脑未开机,则只显示白色),直至高压发生器按钮屏出现"I";按下高压发生器按钮, 高压发生器指示灯亮,此时从"I"变成灯丝形状。(注意:此时在心里默数 30 下, 再摁"灯丝"按扭(上方按扭);此时上方高压指示灯开启并变成。,表示初级泵启动。 此一系列显示灯的变换只持续短短数分钟。);仪器将自动进行光管老化,此时按键为闪 烁的蓝色,并且显示 COND。老化完毕后,高压指示灯显示为。.仪器启动完毕后方 可进行测量。

图 6-4 XRD 主机电源开关(左)、高压按钮(右上)、仪器状态指示灯(右下)

6.4.3 开启软件

打开 DFFRAC. measurement suit, 选择 Lab Manager, 无密码, Enter 进入软件界面。 6.4.4 初始化马达

在设备第一次开机时,需在 Diffrac.Commander 界面上,勾上 request,然后点击 Initialize,对所有马达进行初始化(在每次开机时均需要进行初始化,仪器会自动提醒, 内部文件,请勿随意转发、打印、复印 未初始化显示为叹号 🔺,初始化正常后显示为对勾🗹,马达出错时显示为🔀)。除了此

次开机需要进行初始化,其他情况都不用做初始化。

WIZARD DETECTO	R COMMANDE	R START JO	DBS JOBLIST	DA VI	NCI TOOLS	[
Instrument Compone	ents					
Drive	Unit A	ctual	Edited		3,45	
Theta	[°]	6.0263	5.5104		B Initialize	all checked drive
Two Theta	[°]	12.0525	11.0207		V	
Detector	[°]	6.0262	0.0000		🛃 🥑	17
BeamRotation	[mm]	0.0000	0.0000		🛃 🥑	
Z_MTC	[mm]	-7.00000	-1.74316		N 🥑	
TRIO		Motorized Sli	t: Slitwidth	~	🥑	
	[mm]	0.300	0.300		X	
Optics_Secondary_M	IotorizedSlit	Slitwidth		~	🥑	
	[mm]	7.999	8.000		X	
	图	6-5 马达	初始化			
温原位测试(-150 °C ~ ∃	1500 °C)				

6.5. 高低温原位测试(-150 ℃~1500 ℃)

6.5.1 Two Theta 零点校正

IANDER - User: Lab Manager - Applicatio	n Type: Pow Diffraction - Instrument: MeasSn/(DESK10P-93VJQ50)/Westlake Institute of Advanced Study
Commander Help	
😳 Stop All Jobs	
Rate Meter	DOLS CORJURATION DI MANAGEMENT RESULTS MANAGER CAMERA MRDS EDITOR LOG
PSD Real-time Display	1 TwoTheta 😒 Ztheta 🐭 Eger 28, 5 💥 🚿 15.66
Detector Live View	Reference: And Offset: Determin
Reference And Offset Determination	Drive Too Trata
Direct Command	
Script Designer	
Transmit Drive Positions	Theoretical Position [19] 0.0001
Clear All Drive Offsets	Office Reference
Disable Video	2 5 Current Offset [1] 0.0000
[mm] 0.0000 0.0000	M 🖋 New Offset [1] 0.0406
[/min] 0.0 0.0	
Gobel Mirror	Calculate Peak Position
otorizedSkt Sitwidth	Solution Peak Onegative Peak
[mm] 7.999 8.000	a calculate
[kV] 42 42 🖄	Acov Canot
[mA] 100 100 💭 [W] 4	200.0
Set 1	201 201
	pen j
Cu tube with 1.54184 [Å]. 🔀 Normal oper	ation
503K (0D mode)	
	-4.4 -6.3 -6.2 -6.1 -9 -0.1 2Theta(*)
	Las Main Clipplay Las Secondary Doplay al Video
	Som Setup
	Scan trype TwoTheta Scan mode Continuous Start Resume
	Time / Step [5] 0.050 Steps 201 Total time [5] 10.05 5tep Use Zoom
	Parameter Start Increment Stop
	runa ri arosai ra arosai ta arosai ta arosai aruna chest
	Script editor Script 🗠

图 6-6 Two Theta 零点校正

6.5.1.1 参数及配置设置

Theta Position: 0°, Detector Position: 0°, 确认机柜中光管和探测器在 0°附近都不会碰到任何杂物;

次级光路: 铜吸收片;

TRIO: Motorized Slit: Slitwidth: 0.3 mm;

Optics_Secondary_MotorizedSlit: 8 mm;

X-Ray Generator: 电压 42 kV, 电流 100 mA;

Eiger 2R 500K(0D mode): ROI Size(探测器开口): X(2Theta 方向) 1 Pixel, Y 常用 3.3°;

6.5.1.2 Scan Type TwoTheta

不放样品,将样品台降至最低高度。Scan range: -0.5~0.5°, Increment: 0.01 or 0.005°, time/step: 0.1 s/step,此时峰位在 0° 左右(图 6-6);点击菜单栏 Commander,选择 Reference And Offset Determination,选择峰中心,点击 Apply。

6.5.2 样品装载

粉末样品:将粉末样品均匀铺在加热器/冷却台上,注意不能碰到腔体内任何导线。 块状样品:取下防空气散射刀口,将样品平放在加热器/冷却台上。

图 6-7 高温腔及样品装载

图 6-9 Z-MTC 扫描参数及结果

6.5.3.1 参数及配置设置

Theta Position: 0°, Detector Position: 0°, 确认机柜中光管和探测器在 0°附近都不会碰到任何杂物;

初级光路: Ni0.02 吸收片; 2.5° 索拉狭缝;

次级光路: 铜吸收片; Secondary motorized slit 狭缝 8mm;

TRIO: Motorized Slit;

X-Ray Generator: 电压 30 kV, 电流 10 mA;

Eiger 2R_500K(0D mode).

6.5.3.2 Scan Type Z-MTC

最大范围 -7~1.1 mm, Increment: 0.01 mm, Time/Setp:0.1 s; 在 Z 曲线半高处双击, 自动读取 Z 的准确高度到左列 Z 框中(图 6-9)。

6.5.4 样品测试

6.5.4.1 硬件配置、参数设置:

初级光路: Ni0.02 吸收片; 2.5° 索拉狭缝;

次级光路: 2.5° 索拉狭缝或者全景 2.5° 索拉狭缝;

TRIO: Motorized Slit;

X-Ray Generator: 电压 42 kV, 电流 100 mA;

Detector: Eiger2R_500K(1D mode): ROI Size(探测器开口): X(2Theta 方向) 15°,

Y常用 3.3°;

图 6-10 Coupled TwoTheta/Theta 扫描参数及结果

6.5.4.2 扫描模式(Scan Type):

①Coupled TwoTheta/Theta: 最大范围 5~100°, step size 0.02°/step (图 6-10);

②Still: 设置 Theta 和 Two Theta 中心位置、曝光时间,探测器多通道同时收集 Two Theta 方向数据,该模式能够一次性扫描 2theta 范围小于 15°的区间,次级光路需使用 全景索拉或小索拉狭缝(图 6-11)。

WIZARD DETECTOR COMMANDER START JOBS JOBLIST DA VINCI TOOLS CONF	GURATION DE MANAGEMENT RESULTS MANAGER CAMERA MRDB EDITOR LOG	
Instrument Components	🔚 🔜 🐉 Coupled T 🔟 27heta 🔛 Eiger2R_5 ⊻	180.5s
Drive Unit Actual Edited 🔂 🗍	88-1	
Theta [1] 6.0263 15.0000 🗹 🔛 🖌		
Two Theta [1] 12.0525 30.0000 🕑 🛃 🏑	000	
Detector [1] 6.0262 010 2020 日本 (1) 10 2020 100 10		
BeamRotation [mm] 0.0000		
Z_MTC [mm] -7.00000 -1.74316		
TRIO Motorized Slit: Slitwidth 🔛 🖸 🥩		
[mm] 0.300 0.300 🐼 🏂		
Optics_Secondary_MotorizedSlit Sitwidth 🔤 🗌 🥑		
[mm] 7.999 8.000 🗹 🎉	(Warney - Ba	
X-Ray Generator	2	
Voltage [kV] 30 42. 🚖 🔖 🥑	Court	
Current [mA] 10 100. 💭 [W] 300.0		
X-Ray ON Set Off		
Shutter Open		
Tube TXSTube: Cu tube with 1.54184 [Å]. 💉 Normal operation	8-	
TCPU1_Controller	i i i i i i i i i i i i i i i i i i i	- My
Active Mode Set Temperature	E E	my
Set Mode Set Temperature with Rate 🔤 🖸 🎽	77	N
Set Temperature [*C] 30 26	8	and have
Heating Rate [°C/min] 300 30	10	
Detector Eiger28 500K (1D mode)		
		8 9 10
	La Main Display 🔝 Secondary Display 🖬 Video	
	Scan Setup	
	Scan type Still (Eiger2R_500K (1D mode)) 🛛 Scan mode Still	🗸 🔊 Start Resume
	Time / Step [s] 25.000 Steps () 1 Total time [s]	25 😰 Stop Use Zoom
	①选择Still模式,设置扫描时间	346
		Script editor Script 🛛 🗠
	Scan Setup Info	
1.2 Selftest countdown x=17.8887 [' y=9989.36	a la	

图 6-11 Still 扫描参数

6.5.4.3 数据收集。注意测试完毕后,点击保存 ,保存数据到 D 盘各课题组的文件夹中。

6.5.4.4 测量方法的建立

点击"WIZARD"标签页,点击左上角 New Wizard, 选 XRD 模式,点击 OK, 如图 6-12;

图 6-12 WIZARD 中新建测试方法

设置 Tube: 点击 Tube, 输入电压 42 kV, 电流 100 mA; 自动读取当前的其他硬件设置, 如图 6-13;

DAVINCI	Primary Beam Path	Radius 280		Secondary Beam Path	Radius 279.4977528
	TXSTubeM	ount	×	E	L 🕑 1
XRD BASIC	TXSTube	155			
XRD BASIC		Line		Figer2R 500K	Figer2B 500K (
Method #1	TXSTube				
- 🖌 XRD setup					S 2
L. 🖌 VCT/VSS	Voltage BV/	50 (
	voltage [kv]			DetectorOpticsMount	Deflection 0 [°]
	Current [mA] 50 🤤		-	3
	Power [W]	2500.0			
	Current Boundaries	6,11,15,20,24			
Sequences	Window Thickness [mm]	-1		Optics_Secondary	OpeningDegree
Sequences	Orientation	Line Focus			
	Type Number	0			
XY positions	Serial Number	0			
(III)	Voltage Boundaries	20,21,22,23,2			
Profiles	Alpha 2 [Å]	1.54439			
Settings	Alpha 1 [Å]	1.5406			
Table editor	Element	Cu			
Graphical display	Alpha Ratio	0.5			
	Beta [Â]	1.39222			
Options	Alpha Average [Å]	1.54184			
Options					
(m)					
· ·	Next Previous	Discard			

图 6-13 设置 Tube 电压 42 kV, 电流 100 mA

点击 "Method" 的"XRD setup" 下设置: ①2θ 起始角度 (Start)、 ②终止角度 (Stop)、③步长 (Increment)、 ④曝光时间 (Time/Step) 等参数,如图 6-14;

DIFFRAC.WIZARD - Use							KTOP-93V3Q		Inst 💶 🗂
File Edit View Wizard	Help								
🗅 🚰 🖬 🖁 🌢	۵ 🖨								
WIZARD DETECTOR COMMAN	NDER START JO	BS JOBLIST DA		FIGURATION	DB MANAGE	MENT RESULTS MA	ANAGER CAME	RA MRDB EDITO	RLOG
JAVINCI	Scan type	Coupled TwoTheta/Theta		✓ Time / Ste	Time / Step [s]		Delay time [s]	0.0
DAVINCI	Scan mode	Step		⊻ Steps		2501	Total time [s]	2501
XRD BASIC	Scan parame	ters			1				
🖃 🥩 XRD BASIC	Scan axis		Unit Abs. start		Abs. stop		Increment		
📄 🕑 Method #1	2Theta		[º] 5	5.0001		55.0001		0.0200	
DAVINCI XRD setup VCT/VSS	Theta		[9] :	2,5000		27.5000		0.0100	
	Fixed drives				18				
	Drive	Optional	Position	Unit	Osc.	Amplitude	Unit	Speed	Unit
	BeamRota		0.0000	[mm]		0.0000	[mm]	0.0	[mm/s]
TTT	TrackDista		254.9	[mm]		0.0	[mm]	0.0	[mm/s]

图 6-14 设置"Method"下的"XRD setup"

点击"Profiles"的"Setting"下设置:"Set Temperature"或"Set Temperature with Rate", 点击 Add, 如图 6-15;

	à 🖨								
WIZARD DETECTOR COMMAND	ER START JOBS JO	BLIST DA VINC	TOOLS	CONFIGURATION	DB MANAGEMENT	RESULTS MANAGER	CAMERA	MRDB EDITOR	LOG
DAVINCI DAVINCI XRD BASIC XRD BASIC XRD BASIC Method #1 AVINCI XRD setup VCT/VSS	Define a new profile Available for profil Set Temperature Set Temperature Name Set Temperature	ing are: with Rate Unit	Minimum 12.0	C 2 Maximu 310.0	Add	Default 12.0	Default ch 10.0	ange	
Sequences Sequences	Overview current pr	ofile(s)							
XY positions	Total time [s] [hh:mm:	2501 ss.s] 0:41:41.0	D		Up Down	Delete			
7 Profiles	Name			Segments	R	efine	Total	time	
Settings Table editor Graphical display	Next Pre	vious	iscard						
XRD14									
🥗 🔬 斗 😺 🔳 Selft	est countdown				9				

图 6-15 设置"Set Temperature"或"Set Temperature with Rate"

点击"Profiles"的"Table editor"下设置: 🖊 🗖 📐分别为添加升温、保温、

降温过程,选择 Method 后点击 🙅 添加测试过程,最后控制程序如图 6-16;

A	4	Append 🗸				- 9	à 🗅 🥕		[$\times \mathscr{C}$
	Profile: Set Te	emperature with Rate	1			Avai	lable method(s) S	equence(s) Me	asurement set	tup
	Total time [s]] 4020.8				Scan	i type	Mode	Time	Delay tim
Sequences	(h	h:mm:ss.s] 1:07:00	.8		1	Meth	iod #1: Coupled Tv	voTh Continu	Jous 754.2	2 [s] 0 [s]
Sequences										
(Segment	Segment item	Start time	Start time [s]	Duration	n [s]	End time [s]	Start Y [K]	End Y [K]	Rate [K/hour]
XY positions	▶ 1 (const.)		0:00:00.0	0.000	1.000		1.000	300.0	300.0	0.0
XY positions	2 (const.)		0:00:01.0	1.000	754.200	0	755.200	300.0	300.0	0.0
Refine alignment	-	Measurement (0:00:01.0	1.000	754.200	00	755.200			
Camera	3		0:12:35.2	755.200	200.000	D	955.200	300.0	280.0	-360.0
(4 (const.)		0:15:55.2	955.200	1.000		956.200	280.0	280.0	0.0
7 Profiles	5 (const.)		0:15:56.2	956.200	754.200	0	1710.400	280.0	280.0	0.0
Settings		Measurement (0:15:56.2	956.200	754,200)	1710.400			
Table editor	6		0:28:30.4	1710.400	119,999	9	1830.399	280.0	268.0	-360.0
Graphical display	7 (const.)		0:30:30.4	1830.399	1.000		1831.399	268.0	268.0	0.0
(arrest)	8 (const.)		0:30:31.4	1831.399	754.200	D	2585.599	268.0	268.0	0.0
		Measurement (0:30:31.4	1831.399	754.200	D.G	2585.599			
Ø Options	9		0:43:05.6	2585.599	680.000	D	3265.599	268.0	200.0	-360,0
Options	10 (const.)		0:54:25.6	3265.599	1.000		3266,599	200.0	200.0	0.0
	11 (const.)		0:54:26.6	3266.599	754.200	D	4020.799	200.0	200.0	0.0
Summary		Measurement (0:54:26.6	3266.599	754.200)	4020.799			

图 6-16 在 "Profiles" 的 "Table editor" 中设置温度控制程序

检查各项设置无误后,单击"Save as" 上将方法保存到指定文件夹中;

点击"START JOB"标签页,编辑测量方法(Experiment Name)调用建立的方法 文件,编辑数据保存路径(Result File Name)(将鼠标悬在.bsml 上点击右键,选择 Create result file name:即可产生与方法同路径同文件名的结果文件),设置完成后点击右下方 的"Start Jobs",如图 6-17;

Valid	Sample ID	Experiment Name	Result File Name	Script Name	Priority	
e		\Al-300K to 200K-2th-20-90deg.bsml	Carata	····		/
			Creater	esuit file name(s)		
			Сору			
			Paste			
			Clear ro	w		
			Clear all			
			Cited at		-	
			Save job) list as		
1			Load jo	o list		
7			Save the	e selected job(s) as job template		
			Save the	e selected job(s) as scheduled job		
			Column	editor		
			Restore	column default settings		
			Inclusion C	column deruut settings		

图 6-17 SART JOBS 标签页中设置任务

在数据采集过程中,可以打开"JOB LIST"标签页查看实验结束的时间。

6.5.5 原位测试

密封变温腔,连接腔体和真空泵,打开机械泵,拧紧排气阀(破真空时顺序相反),等待真空度达到 10⁻² mbar 左右(图 6-18、图 6-19、图 6-20)。

图 6-18 密封变温腔

图 6-20 真空泵读数表

6.5.5.1 测试样品在真空常温下的数据。

6.5.5.2 设置测试温度(图 6-21),待温度稳定后测试变温数据。

Active Mode	Set Temperature	ĕ	
Set Mode	Set Temperature with Rate	<u>~</u> 2	H
Set Temperat	ure [ºC]	30 1 100	
Heating Rate	[°C/min]	30 30	

图 6-21 设置测试温度和升温速率

6.5.5.3 测试完毕后,将温度设为常温,待腔体温度恢复常温,打开真空泵排气阀, 关闭真空泵;打开变温腔取出样品。

6.6. 低温原位测试(12K~320 K)

6.6.1 准备液氦压缩机

降温前,提前 30 分钟将液氦压缩机主切断开关(黑色旋钮)从"O"旋转到"I"的位置,压缩机稳定后,Power灯常亮(如图 6-22)。

注意: 当液氦气压低于 15.5 bar, 需补充液氦。

Power Hour Compressor 99333	
Low Pressure High Temp	Note: This card was seen in make
3	Model Bhatring and Stopping rays for Mencentar Verse.
	Power Hours Compressor

图 6-22 液氦压缩机

6.6.2 Two Theta 零点校正

见 6.5.1Two Theta 零点校正,不再赘述。

6.6.3 样品装载

将块体样品用低温胶固定到样品架上,注意样品要平;将粉末样品在带槽样品架上 压实。

用洗耳球吹净样品架和样品,以免小颗粒被吸入分子泵。

将样品架在样品台上旋紧(如图 6-23)。

图 6-23 将样品架在样品台上旋紧

6.6.4 调整样品高度

顺时针旋转样品台右后方旋钮(如图 6-24),将样品台调至最低。

图 6-24 样品台右后方旋钮,顺时针旋转降低样品台,逆时针旋转升高样品台

Theta Position: 0°, Detector Position: 0°, 确认机柜中光管和探测器在 0°附近都不会碰到任何杂物;

点击菜单栏 "Commander",选择"Rate Mater", 单击"Open Shutter",单击"Set as Reference"将光路全开的探测器计数值写入作为参考。

单击"Close Shutter", 逆时针旋转旋钮升高样品台, 直至"Open Shutter"后的 Actual Rate 计数为 Reference Rate 的 50%, 如图 6-25。

取下铜吸收片,换上索拉狭缝。

此时可以测试样品在空气中的实验结果。

图 6-25 打开 Rate Mater 调整样品至 1/2 切光

6.6.5 抽真空

6.6.5.1 装上小罩子, 拧紧四颗螺丝, 如图 6-26。

图 6-26 安装低温腔小罩子

6.6.5.2 放上大罩子,将四个锁扣扣紧,如图 6-27。

图 6-27 安装低温腔大罩子

6.6.5.3 开初级泵开关;开分子泵电源,此时分子泵开始自检,绿灯闪烁为正常开机。6.6.5.4 关闭分子泵排气阀。

6.6.5.5 按分子泵 ▶ 直到显示 309 actual speed,按 ● 启动分子泵,分子泵转速将 逐渐升至 1500 Hz (约需 10 min),最后真空度达到 10⁻⁴ hPa,如图 6-28。

图 6-28 初级泵及分子泵

6.6.6 数据收集

6.6.6.1 数据收集方法见本文 6.5.4 样品测试,不再赘述。6.6.6.2 开启温度控制器电源(如图 6-29)。

图 6-29 温度控制器

设置测试温度或以一定变温速率设置测试温度(如图 6-30),待温度稳定后测试变 内部文件,请勿随意转发、打印、复印 温数据,测试完成之后保存数据到 D 盘各课题组的文件夹中;或通过 Wizard 编辑方法 建立测试程序,见本文 6.5.4 样品测试,不再赘述。

Active Mode	Warmup		\mathbb{N}			
Set Mode	Set Tempera	ature	(1) ②	V 🕅	
Set Temperat	ire	KI 🗌	280.3	200.0		

Phenix_Controller									
Active Mode	Warmup	₩ 🕑							
Set Mode	Set Temperature with Rat	🛛 🏹							
Set Temperat	ure [K]	280.3	277.7						
Heating Rate	[K/hour]	360.0	360.0						

图 6-30 设置测试温度或以一定变温速率设置测试温度

6.6.7 回暖、关泵、取样

不需要降温时即可关闭液氦压缩机。

测试完毕后,运行"Warm up"(如图 6-31),"Warm up"(回暖到 310K)运行完毕 后 30 分钟,关掉温度控制器。

Phenix_Cont	roller	
Active Mode	Warmup	N
Set Mode	Warmup	(1)⊻ 🗸 🎉

图 6-31 运行 Warmup

按①关闭分子泵,等待分子泵转速下降到 200 Hz 以下或 0 Hz,可以打开排气阀, 关闭分子泵电源,关闭初级泵电源。

移除大罩子,松开螺丝,移除小罩子,旋转取下样品架,清理样品。

内部文件,请勿随意转发、打印、复印

6.7. 高分辨测试

6.7.1 Two Theta 零点校正

6.7.1.1 参数及配置设置

Theta Position: 0°, Detector Position: 0°, Phi Position: 90°, Z-craddle: -1 mm, 确认机柜中光管和探测器在 0°附近都不会碰到任何杂物;

次级光路: 铜吸收片;

TRIO: GE004_ChannelCut (G004 单色器, 初级光路用 1.0off 偏光狭缝); 或 Globle

Mirror(Globle 镜,得到含 Kα2 的平行光,初级光路用防发散狭缝 0.6mm 或 1mm 等);

Optics_Secondary_MotorizedSlit: 8 mm;

X-Ray Generator: 电压 42 kV, 电流 100 mA;

Eiger 2R_500K(0D mode):ROI Size(探测器开口):X(2Theta 方向) 1 Pixel,Y常用 3.3°;

6.7.1.2 Scan Type TwoTheta

不放样品, Scan range: -0.5~0.5°, Increment: 0.01 or 0.005°, time/step: 0.1 s/step, 此时峰位在 0°左右(图 6-32); 点击菜单栏 Commander, 选择 Reference And Offset Determination, 选择峰中心, 点击 Apply。

Commander Help	
😳 Stop All Jobs	
Rate Meter	DOLS CODURATION DE MANAGEMENT RESULTS MANAGEM CAMERA MEDE EDITOR LOG
PSD Real-time Display	TwoTheta
Detector Live View	
Reference And Offset Determination	
Direct Command	Drive Two Treta
Script Designer	Peak Position [1] 0.0406
Transmit Drive Positions	Theoretical Position [1] 0.0001
Clear All Drive Offsets	B Offset Reference
Disable Video	Current Offset M 0,0000
[mm] 0.0000 0.0000	
[/min] 0.0 0.0	New Offset [7] 0.0406
Gabel Mirror	Calculate Peak Position
sizedSit Situatity	OP Podtive Peak Negative Peak
Emil Teen a cool	
trad [
NI 42 42 0	Apply Canod
[ma] 100 100 000	
head the real fail	*200 B
Set	orr E
· · · · · · · · · · · · · · · · · · ·	Geen
tube with 1.54184 [Å]. 🛞 Normal op	version a
500K (0D mode)	
	de da
	La March Cruster La Secondary Digitary and Video
	San Selup
	Scan type TwoTheta 🛛 Scan mode Continuous 🔊 🔊 🔊
	Tene / Step fal 0.050 Steps 201 Total time fal 10.05 time time Zvern
	Event Even
	zinesa [1] (v.mor#) [1] (0.000) [1] (0.0001)
	Solpt edius Solpt 👻

图 6-32 Two Theta 零点校正

6.7.2 样品表面对光

6.7.2.1 对光目的:1)将样品制高点与光路中心对齐;2)样品表面与平行光对齐。(图 6-33)

最大范围 -1~1.2 mm, Increment: 0.01 mm, Time/Setp:0.1 s; 在 Z_Cradle 曲线半高 处双击,自动读取 Z_Cradle 的准确高度到左列 Z_Cradle 框中(图 6-34)。

图 6-34 Z_Cradle 扫描参数及结果

6.7.2.4 Scan Type Rocking

Scan range: -1.0 ~ 1.0, Increment: 0.01 or 0.005°/step, time/step: 0.1 s/step, 在 Rocking curve 上的峰顶处双击来自动读取 Omega 角度值到左列 Theta 框中(图 6-35)。

strument Components			P		🐼 Rocking 5: 💉 Theta	🖂 Eiger2R_5 🖂	25	i.5s	
ive Unit	Actual Edit	ted 💽 🗆	15.45 💜	1					
eta [º]	1.1050	-0.3666	81 2	000					
o Theta [*]	0.0001	0.0001 🔽	1	0000					
tector [*]	-1.1049	0.0000	₽√ 🖋						
_Crade [*]	0.00	0.00	BV 🥑	8					
_Cradle [º]	90	90 🗸	1	s ooooo					
mRotation [mm]	0.0000	0.0000	81 2	p 4					
Cradle [mm]	-0.4170	-0.4170	8 2						
lable rotation [/min]	0.0	0.0	20	100000					
10	Göbel Mirror	1	- 🗆 🅑	20					
tics_Secondary_MotorizedSlit	Slitwidth	la	🖌 🗆 🅑	1					
[mm]	7.999	8.000	1						
-Ray Generator					-0.9 -0.8 -0.7 -	0.6 -0.5 -0.4 -0.3 -0.2	-0,1 0	0.1 0.2	0.3 0.4
ltage [kV]	42	42 💭	🔁 🖌				Theta	(*)	
ment [mA]	100	100 🗘 [W]	4200.0	A Main	Display 🗽 Secondary Display	nd Video			
Ray		Set	Off	Scan Setu					
close			Open	Scan type	Rocking	Scan mode Continuous	2	A Start	Resume
ube TXSTube: Cu tube with	1.54184 [Å].	Normal c	operation	Time / Ste	p [s] 0.100 Steps	201 Total time [s]	20.1	😳 Stop	Use Zoom
tector Eiger2R_500K (0D r	node)	×	8/ 2	Paramete	r Start	Increment Stop		201	
The second se			- Maril	Theta	[9] -1.0000	0.0100 [9]	1.0000	Auto repeat	

图 6-35 Rocking 扫描参数及结果

6.7.2.5 重复步骤 6.7.2.3-6.7.2.4,每次测量都将 Z_Cradle 或 Theta 值更新到相应的位置,直至 Z_Cradle 与 Omega 的值变化非常小,使样品表面尽量平行于光路。记录 Theta 零点偏移量(此次测试为-0.3666°)。取出次级光路上的铜吸收片。

6.7.3 测定衬底峰

6.7.3.1 确定的衬底峰

常规衬底出峰: Si 004: 69.132; Si 111: 28.5; Sapphire 0006: 41.6; STO: 46.472。

以下以 STO 为例。如果衬底明确,则直接将 Two Theta 定在以 STO 的出峰位置 46.472°,带有微小倾角进行 Rocking curve 测试。

Scan type: Rocking, Scan range of 22~25°, Increment: 0.01°, time/step: 0.1 s, 在 Rocking curve 上的峰顶处双击来自动读取 Omega 角度值到左列 Theta 框中。

Scan type: Offset coupled TwoTheta/Theta, Scan range of 43~53°, Increment: 0.01 °,在此曲线上的峰顶处双击来自动读取 Two Theta 角度值到左列 Two Theta 框中。注意 Offset coupled TwoTheta/Theta 扫描时, Theta 需要与 Theta 零点偏移值相加,即将 Theta 起始值设为 43/2+(-0.3666)=21.1334°(图 6-36),下文不再赘述。

WIZARD DETECTOR COMMAND	FR START IORS IORIIST DA	WINCE TOOLS	CONFIGURATION OR MANAGEMENT DEPUTTS MANAGER CAMERA MODE EDITOR LOG
Instrument Components	- aller same same to	I	P Theta × Exer 28.5 × 109.0s
Drive Unit	Actual Edited 🔂	1 Stas 14	
Theta [*]	26.2359 22.8531	- 😽 🕑	
Two Theta [*]	53.2051 46.4595	- 14 2	
Detector [*]	26.9692 0.0000	3	
.hi_Cradle [9]	1.16 1.16	- 😽 🕑	00000
Phi_Cradle [*]	90 90	- 1 3	(Sd d
BeamRotation [mm]	0.0000 0.0000	- 😽 🖌	20000
Z_Cradle [mm]	-0.3225 -0.3225	- 🚺 🕑	
/ariable rotation [/min]	0.0 0.0	1 2	8
TRIO	Göbel Mirror		
Optics_Secondary_MotorizedSlit	Sitwidth		
[mm]	7.999 8.000	2 🏂	
[mm] X-Ray Generator	7.999 8.000	- XI	
[mm] X-Ray Generator Voltage [kV]	7.999 8.000 5	2 🕅	43 44 45 46 47 48 49 50 2Theta(*)
[mm] X-Ray Generator Voltage [kV] Current [mA]	7.999 8.000 5 42 42 2 100 100 0 [м]	v) 4200.0	43 44 45 46 47 46 49 50 2Theta(*) Secondary Display ad Video 2Theta(*) 10
[mm] X-Ray Generator Voltage [kV] Current [mA] X-Ray ONICO	7.999 8.000 5 42 42 2 100 100 2 [v Set	v] 4200.0 Off	As 44 45 46 47 48 49 50 2Theta(*) Main Display Secondary Display ad Video Scan Setup
[mm] X-Ray Generator Voltage [kV] Current [mA] X-Ray Const Shutter	7.999 8.000 42 42 100 100 Set	✓ ∑1 ↓1 4200.0 Off Open	Main Display Secondary Display </td
[mm] X-Ray Generator Voltage [kV] Current [mA] X-Ray ON Shutter Custor Tube TXSTube: Cu tube with	7.999 8.000 5 42 42 ☆ 100 100 ☆ [V 5et	V] 4200.0 Off Open	Image: Scan Setup Scan Setup Scan Setup Scan type Offset coupled TwoTheta/Th Scan mode Continuous Time / Step [s] 0.050 Steps 1001 Total time [s] 50.050 Stop Use Zoom
[mm] X-Ray Generator Voltage [kV] Current [mA] X-Ray CLOSE Shutter CLOSE Tube TXSTube: Cu tube with Detector Ener 20 SONE (00.0	7.999 8.000 5 42 42 ☆ 100 100 ☆ [M Set 1.54184 [Å], ☆ Norma	V V V V V V V V V V V V V V V V V V V	Image: Secondary Display Image: Secondar
[mm] X-Ray Generator Voltage [kV] Current [mA] X-Ray Shutter Tube TxSTube: Cu tube with Detector Eiger 2R_500K (00 r	7,999 8.000 6 42 42 6 100 100 0 0 Set 1.54184 [Å]. Norma node) 100 100 100	Y X Image: Constraint of the second se	Image: Display Secondary Display Secon

图 6-36 Offset coupled TwoTheta/Theta 扫描参数及结果

6.7.3.2 不确定衬底峰

6.7.3.2.1 若衬底峰不明确,则先找出衬底峰位,具体设置如下: Scan type: Offset coupled TwoTheta/Theta, Scan range of 44 ~ 50°, Increment 0.01°, time/step: 0.1 s, 在此曲线上的峰顶处双击来自动读取 Two Theta 角度值到左列 Two Theta 框中;

在大角度范围时用大步长粗扫,然后放大此峰区域用小步长进行精扫;

比如粗扫 44~50°, step size: 0.01; 精扫 46~47°, step size: 0.005。

6.7.3.2.2 衬底晶面的摇摆曲线测试

然后对此 2Theta 峰进行摇摆曲线测量: Scan type: Rocking; Scan range of 23~24°; Increment 0.002°/step, time/step: 0.1 s/step 在 Rocking curve 上的峰顶处双击来自动读取 Omega 角度值到左列 Theta 框中。

6.7.4 衬底峰位优化

6.7.4.1 优化 Chi 值

Scan type: Chi, Scan range of -2~2°, Increment: 0.05, time/step: 0.1 s, 在此 曲线上的最高处双击来读取 Chi 值到左列 Chi 框中。

6.7.4.2 优化 Phi 值

Scan type: Phi, Scan range of 80~100°, Increment: 0.1, time/step: 0.1 s, 在此 曲线上的最高处双击来读取 Phi 值到左列 Phi 框中。

6.7.4.3 优化 Two Theta 值

在获取的新 Omega 值后,进行 2Theta 的优化:

Scan Type: Offset coupled TwoTheta/Theta, 2Theta range: 46~47°, Increment: 0.01, time/step: 0.1 s/step, 找到 2Theta 峰并在半高宽处双击来获取新的 Two Theta 值(自动 写入左列 Two Theta 方框中);

6.7.5 薄膜峰 2Theta-Omega 扫描

若衬底上有薄膜,将 2Theta 区域放大, Scan type: Offset coupled TwoTheta/Theta, 2Theta range: 47~49°,找到薄膜峰后双击此峰位,自动读取数值到 2Theta;

6.7.6 薄膜峰的 Rocking curve 扫描

将上面找到的 2Theta/Omega 值勾住(最好记在自己的实验本,以备将来所需),然 后进行 Rocking curve 扫描,保存数据为.brml。

HUIT REALE

6.8. 数据格式转换

打开 File Exchange 7.3,在左侧的"Source"栏选择需转换格式的数据文件,然后在 右侧"Target"栏设置转换后数据需要存储的格式(通常需要转换成 Raw V3 和 UXD 格 式)及路径,点击右下方的"F9 Convert"。

EILE EXCHANGE 7.3						
File Tools Help						
Ta C:\ Ta D:\ To E:\ Ta G	:\ 🛍 H:\ Z:\ \	DB	C:\ D:\ 🖉 E:\	🖬 G:\ 🖬 H	:\ Z:\ \	
[SOURCE] .dat type None	×	Filter: .brml 🔟	[TARGET] convert to	o: Raw V3	2	Fiter: 🔭 🔛
Name	Ranges	Size	Name	Raw V1 Raw V2		Size
20210501030.brml 20210502031.brml 20210503032.brml		616771 614574 614546	20210501030.brml 20210502031.brml 20210503032.brml	Raw V3 Raw V4 Raw V5 UXD XML	т 	616771 614574 614546
D:\XRD_Lab\Service\XRD\Exte F2 Rename F3	ernal\Yanping_Liu\20210 View F4 Ru	1506 n F5 Copy F6 №	D:\XRD_Lab\Service\XR love F7 New D	tD\External\Ya	nping_Liu\20 Delete	F9 Convert F10 Merge
Ready						

图 6-37 数据格式转换

内部文件,请勿随意转发、打印、复印

7. 相关/支撑性文件

Q/WU FLHR001 文件编写规范

8. 记录

原位 X 射线衍射仪 Bruker D8 Discover 使用记录表 V1.0 (科研实施与公共仪器中心通用版)

	仪器设备使用记录本									
				测试	方式	仪器	状态	मा फ		
日期	测试人	导师(PI)	测试内容	送样	自主 操作	使用前	使用后	(起止时间)	联系电话	备注
							スス			
								2		
						V 7	7			
							/			
						7				
				-V						
		8								

第 33 页,共 33 页

请注意:使用前先检查仪器状况,正常方可操作,一旦测试使用,默认为测试前仪器状况为正常,测试后记得取走样品再关机。紧急联系电话: