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Automated Identification of
Differential-Variational Equations
for Static Systems
Data-driven equation identification for dynamical systems has achieved great progress,
which for static systems, however, has not kept pace. Unlike dynamical systems, static
systems are time invariant, so we cannot capture discrete data along the time stream,
which requires identifying governing equations only from scarce data. This work is
devoted to this topic, building a data-driven method for extracting the differential-varia-
tional equations that govern static behaviors only from scarce, noisy data of responses,
loads, as well as the values of system attributes if available. Compared to the differential
framework typically adopted in equation identification, the differential-variational frame-
work, due to its spatial integration and variation arbitrariness, brings some advantages,
such as high robustness to data noise and low requirements on data amounts. The applica-
tion, efficacy, and all the aforementioned advantages of this method are demonstrated by
four numerical examples, including three continuous systems and one discrete system.
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1 Introduction
Data science in recent years has received remarkable progress

along with the great advances in computing hardware and numerical
algorithms and is qualified to be the fourth paradigm of scientific
discovery [1]. The explosive advancement of data science has inno-
vated the research means of engineering techniques and has even
promoted the automation of scientific discovery.
Here, let us focus our attention on a relatively narrow but exciting

subfield: data-driven equation identification, which involves auto-
matically or at least semi-automatically extracting the equations
that govern the behaviors of interest from the discrete data of
outputs and inputs captured from systems. Early works in this
area resort to symbolic regression [2–4] and sparse-promoting

optimization [5–7]. Symbolic regression-based methods possess a
high degree of flexibility but are prone to overfitting [8,9], while
sparse regression-based methods possess high efficiency but are
sensitive to data noise. Further developments along this direction
include, but are not limited to, integral identification [7], variational
identification [10], and differential equation weak-form identifica-
tion [11]. Undoubtedly, all of these apparently different descrip-
tions reflect essentially the same phenomenon. The ultimate
objective of all these works is to improve computational efficiency,
reduce the requirement on data amount, and improve robustness to
data noise, albeit with different means.
All works mentioned above aim to extract the explicit relations

between outputs and inputs. Another set of works principally
based on neural networks–ordinary differential equations [12,13]
has been parallelly established to extract the implicit relations. By
embedding knowledge of fields, Lagrangian neural networks [14],
Hamiltonian neural networks [15,16], and their various variants
[17–19] have been further developed to improve the precision of
identification. Compared to implicit methods, explicit methods
always extract the governing equations with interpretability and,
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therefore, play a pivotal role in scientific discovery because it is
only the explicit relations that are the golden criteria of scientific
explanation.
Nevertheless, the preceding works are entirely confined to iden-

tifying governing equations for dynamical systems, i.e., identifying
the time-evolution equations of states or other variants, while no
work has been devoted to identifying governing equations for
static systems. Hence, an ultimately important issue arises: why
are statics unconsciously neglected or even deliberately excluded?
As a reasonable speculation, it could be because statics is always
regarded as a special case of dynamics. However, this is not true,
at least in equation identification! The most notable difference
between statics and dynamics lies in the difficulty of capturing dis-
crete data from which governing equations are identified. For dyna-
mical systems, data are endlessly generated with the elapse of time
and can be readily captured by sensors [20]; for static systems,
however, one load only generates one set of data, which does not
change over time. This requires the equation identification of
static systems must be implemented from scarce data. The varia-
tional identification method [10] immediately becomes one alterna-
tive, given its low requirement for data amount and the robustness
to data noise [21], although the present version is only suitable for
dynamical systems [22].
The variational identification for dynamical systems takes the

variational principle, the integral-variational principle specifically,
as the fundamental assumption [23]. Under the integral-variational
framework, it comes down to determine two functions of inte-
grands. As a matter of fact, there exist two classes of variational
principles, that is, integral-variational principles and differential-
variational principles; both of them provide the conditions distin-
guishing the true response from all possible responses. The
former compares in a finite time interval, while the latter at some
instant. Both the integral- and differential-variational principles
can be adopted to describe the behaviors of dynamical systems,
and they are mutually equivalent. Static systems do not evolve
over time; thus, only the differential-variational principles can be
adopted.
This work is devoted to this topic, namely, building a data-driven

method to automatically identify the differential-variational equa-
tions for static systems only from scarce discrete data. It can be
regarded as the companion piece of variational equation identifica-
tion for dynamical systems [10]. The rest is organized as follows:
Sec. 2 gives all details of methodology, from introducing funda-
mental assumption, collecting discrete data, prespecifying varia-
tions, constructing and identifying functions, up to implementing
sparsification; in Sec. 3, through three continuous examples, we
illustrate the application of this method and discuss its robustness
to data noise and the requirement on data amount; Sec. 4 is dedi-
cated to the equation identification of discrete static systems, with
an emphasis on the difference between continuous system identifi-
cation and discrete system identification. Section 5 closes this paper
and gives some conclusions, discussion, and prospects.

2 Methodology
This section is devoted to establishing a data-driven method to

automatically identify the differential-variational equations for
general static systems. The differential-variational framework is
first embedded as a fundamental assumption. The method consists
of several successive steps, including collecting discrete data of
actual responses (output) and of loads (input), prespecifying the var-
iations of actual responses, constructing the form of the
to-be-determined functions, and finally identifying functions and
implementing sparsification.
Herein, let us first confine the discussion to the case of continuous

systems; the discrete systems will be treated in Sec. 4. For a contin-
uous static system (i.e., a time-invariant continuous system)
encountered in practice, we should first pinpoint the responses con-
cerned q(x), all effective loads f(x) influencing the responses, and

provide all system attributes s if available, in which the arguments
(vector x) represent the essential spatial dimension of the system
under consideration. Taking a mechanical system as a representa-
tive, the responses will be the displacements of points of material
with spatial coordinates x, the effective loads will be the forces
and/or couples imparted on some positions and/or some domains,
while the system attributes may include mass, length, material prop-
erties, and so forth. Our objective is to establish the explicit relations
within q(x), f(x), and s only from the discrete data captured.
Here, we first introduce the fundamental assumption: for a static

continuous system, the actual responses satisfy the following
differential-variational equation:

δ

∫
Ω
U0(s; q, ∇q, ∇2q, . . . )dx

[ ]
+
∫
Ω
U(f(x); s; q, ∇q,

∇2q, . . . ; δq, δ∇q, δ∇2q, . . .)dx = 0 (1)

provided that the variations of actual responses satisfy the imposed
boundary conditions. Here, Ω is the spatial domain occupied by
the continuous system, U0 is a function of responses, their
various-order spatial derivatives, and system attributes, while U is
a function of responses, its spatial derivatives and their variations,
loads, and system attributes. U0 and U possess the dimension of
energy density. This fundamental assumption is exactly the same
as the differential-variational principle of mechanics, which is one
of the most ubiquitous principles in natural science. In the view-
point of mathematics, a differential-variational equation is equiva-
lent to a set of differential equations, with the former involving
lower-order spatial derivatives. Our objective is now converted to
identify two unknown functions U0 and U from the discrete data
q(x), f(x), and system attributes s.

Step 1: Collecting discrete data of responses and loads. For a
continuous system encountered in practice, the only way to
capture the discrete data of responses and loads is through
experimental measurements: arranging various-class
sensors appropriately (usually equally distributed in space)
and accurately recording time-invariant discrete data. Intrin-
sically, a continuous system occupies three spatial dimen-
sions; in practice, however, the responses of interest may
only depend on one or two spatial dimensions, which can
dramatically reduce the requirement on the number of
sensors or the times of testing. Different discrete data can
be captured for different cases by changing the values of
loads. It should be emphasized that the discrete data captured
from several cases are crucial to extract all imposed boundary
conditions and to specify the variations of actual responses.
For case i, we denote the discrete data of responses as
{qi(xj)} and that of loads as {fi}, in which xj represents dis-
crete spatial coordinates.

Step 2: Prespecifying variations of actual responses. Here, we
start with several sets of discrete data of responses {qi(xj)}
captured from several cases and numerically evaluate
various-order spatial derivatives {∇qi(xj)}, {∇2qi(xj)} . . . .
at boundaries. All imposed boundary conditions can be
readily extracted by carefully inspecting the discrete data
and various-order spatial derivatives at the boundaries: if
some order derivative at some boundaries remains
unchanged for all sets of discrete data, this specific derivative
is regarded as an imposed boundary condition. The highest
order evaluated at boundaries is first selected as one or two
and then gradually increases until the equation identified
meets the required precision. This implementation satisfies
the rule of parsimony [5]. Once all imposed boundary condi-
tions are extracted, we can easily prespecify a set of varia-
tions of responses satisfying all of them.

Step 3: Constructing the form of to-be-determined functions.
Here, we illustrate how to construct the form of to-be-deter-
mined functions U0 and U for two different situations,
respectively. For the first situation, where the dimensions
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of all quantities including responses, loads, and system
attributes are known to us, we express their dimensions by
a set of basic dimensions, mass (M), length (L), and time
(T), for instance; we then construct parameter clusters with
the dimension of energy density by responses q(x), their
various-order spatial derivatives ∇q, ∇2q . . . ., loads f(x),
and system attributes s, and express the integrand U0 by
the linear combination of these parameter clusters, that is,
U0 =

∑
i Ai([M]1[L]1[T]−2)i. Similarly, we construct param-

eter clusters by responses, their various-order spatial deriva-
tives, their variations δq, δ∇q, δ∇2q . . . ., loads, and system
attributes and express the integrand U as
U =

∑
i Bi([M]1[L]1[T]−2)i. Here, (•)i denotes the ith param-

eter cluster with dimension “•” constructed by associated
quantities. Now, let us move to another situation in which
the dimensions of all quantities, or some of them, are
unknown to us. In this situation, constructing the
to-be-determined functions by the rule of dimensional con-
sistency is not feasible. Nevertheless, we can simply
expand the integrands as the linear combinations of a set of
preselected functions of responses, their various-order
spatial derivatives, and their variations, such as power func-
tions, trigonometric functions, exponential functions, and so
forth. Undoubtedly, it is impossible to include all terms in the
analysis, so the linear combinations must be truncated
according to the parsimonious criterion [5], which means
that only the lower-order terms are significant in practical
physical systems. So far, what we should do is to determine
two sets of coefficients Ai, Bi by the discrete data captured.

Step 4: Identifying functions and implementing sparsification.
Substituting the captured discrete data (responses
{qi(xj)}, loads {fi}, and system attributes s), the dis-
crete data calculated (various-order spatial derivatives
{∇qi(xj)}, {∇2qi(xj)} . . . .), and the variations prespecified
(δqi(xj), δ∇qi(xj), δ∇2qi(xj) . . . .) into differential-variational
Eq. (1), we establish a set of overdetermined linear algebraic
equations Aξ = 0 by some simple calculus, in which A is a
definite and known rectangular matrix, ξ is a column
vector constituted by the to-be-determined coefficients Ai,

Bi. The non-trivial solution of the overdetermined algebraic
equations, i.e., the values of coefficients ξ, can be calculated
by the pseudo-inverse algorithm. Once the values of coeffi-
cients ξ are determined, the differential-variational equation
satisfied by the static system under consideration is totally
identified.

Note that the column vector ξ (i.e., the list of coefficients of
parameter clusters) determined by the pseudo-inverse algorithm
[24] is usually dense but not sparse. Sparsity, however, is one of
the most significant characteristics of nature; thus, it is natural to
construct an associated problem of sparse optimization [25–27] to
solve the aforementioned overdetermined equations and acquire
the sparsest solution and, consequently, the sparsest differential-
variational equation. Specifically, we introduce the residual as

J(ξ) = ‖Aξ‖22 + ρ‖ξ‖0 (2)

in which ‖ · ‖2 and ‖ · ‖0 denote L2-norm and L0-norm of the
argument, respectively; ρ is a weighted factor penalizing the
number of non-zero components. By solving the optimization
problem in Eq. (2), we obtain a sparse solution balancing the
precision of identification and the complexity of the model. The
optimization problem is implemented by an iterative procedure;
that is, in each iterative step, we delete one term with minimal
absolute value and proceed to the next iterative step until the resid-
ual abruptly increases. It is worth pointing out that the assumption
of sparsity is not always valid. For instance, let us consider a
relation precisely described by a sinusoidal function; the coeffi-
cients are certainly not sparse if we preselect basis functions as
power functions. Thus, the appropriate selection of base functions
(i.e., parameter clusters) is of great importance to sparse
optimization.
The detailed flowchart of this data-driven method, which

includes four successive steps, i.e., collecting data, prespecifying
variations, and constructing and identifying integrands, is depicted
in Fig. 1. In what follows, several representative examples are
investigated at length to illustrate the application and efficacy of
the established method.

Fig. 1 Flow chart of the data-driven method for identifying differential-variational equations
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3 Numerical Examples
As preliminary research, the continuous systems selected are con-

fined to one-dimensional bounded systems; that is, the independent
spatial variable x is a scalar taking values in a given interval. The
continuous systems are selected from classical mechanics, includ-
ing a uniform-section homogeneous beam imposed by a transverse
uniform-distributed load, an elastic slender column compressed by
a concentrated force along its axis, and an open thin-walled shaft
torqued by a uniform-distributed couple. For all these problems,
the discrete data can be captured from the analytical expressions
(with deliberately added noises) but not necessarily from experi-
mental measurements. All these examples, including physical
models themselves, the discrete data adopted, the governing equa-
tions identified, and the associated exact equations, are summarized
in Fig. 2.

3.1 Simply Supporting Beam Imposed by Transverse
Uniform-Distributed Load. Let us first investigate a simply sup-
ported square cross-section beam with a side length of b, a length of
l, and an elastic modulus of E. The beam is subjected to a uniformly
distributed transverse load with an intensity of p (i.e., force per unit
length) along the negative y direction, as shown in the first row and
the first column in Fig. 2. The response of concerned is the trans-
verse displacement (i.e., deflection) w(x) of points of material at
the middle line; the external load is measured by its intensity p;
and the system attributes include the side length, length, and
elastic modulus, that is, s= [b, l, E].

3.2 Collecting Data. Herein, the discrete data of response
are directly captured from the analytical expression w(x)=
(px/24EI)(l3− 2lx2+ x3), which can be readily derived by solving
the governing differential equation EIwxxxx+ p= 0, in which I=
b4/12 denotes the moment of inertia of the square cross section.
We set the values of system attributes as b= 0.1 m, E= 3 ×
109 Pa, and l= 3 m, while the intensity of load takes values from
50 N/m to 110 N/m with an increment 2 N/m. Set the sampling
interval as 0.01 m. Accordingly, we capture 31 sets of discrete
data, with each set including 301 discrete data points. The above
parameters will also be adopted below without mentioned

otherwise. All the discrete data collected are depicted in the first
row and the second column in Fig. 2.

3.3 Prespecifying Variations. Let us first estimate the lowest
several-order spatial derivatives of response at boundaries from the
discrete data. Various-order derivatives are calculated by the finite
difference method, with the forward difference for the left boundary
and the backward one for the right boundary. The calculated results
are depicted in Fig. 3 for all 31 sets of discrete data (only the
first four order derivatives are shown), from which the imposed
boundary conditions can be readily extracted. Whether at the left
boundary or the right boundary, for all cases, the zero-order deriv-
ative (i.e., the response itself) and the second-order derivative
remain invariable while the others do not. Whereby the imposed
boundary conditions are extracted, that is, w(0)=w(l )= 0 and
wxx(0)=wxx(l )= 0. The variations of actual responses should

Fig. 2 Summary of governing equations identified for four typical static systems

Fig. 3 Various-order spatial derivatives at boundaries for
bending beam
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satisfy all imposed boundary conditions, i.e., δw(0)= δw(l)= 0 and
δwxx(0)= δwxx(l)= 0. We simply specify the variations as sin(nπx/
l), in which n denotes arbitrary positive integers. For instance, by
setting n= 1, 3, 5, 7, we obtain four different variations of the
actual response.

3.4 Constructing Integrands. Assume the dimensions of
response, load, and system attributes are all known to us. Two inte-
grands U0 and U (to-be-determined functions) can be constructed
with the help of dimension analysis. The dimensions of system attri-
butes, loads, responses, their various-order derivatives, and two
integrands, expressed by basic units, are shown in Table 1. Note
that the variation of one function possesses the same dimension
as the function itself. As a first try, only the lowest two order deriv-
atives and their associated variations are retained. Let us first
exclude all terms with negative powers and confine the total
power of each term not exceeding 7. Besides, noting that the
length l enters the differential-variational equation according to
the upper bound of spatial integral, we exclude it in the construction
of parameter clusters. As a result, two integrands are expressed as
the linear combinations of parameter clusters constructed, that is,

U0 = A1Eb
2 + A2Ebw + A3Ew

2 + A4Eb
2wx + A5Ebwwx

+ A6Ew
2wx + A7Eb

3wxx + A8Eb
2wwxx + A9Ebw

2wxx

+ A10Ew
3wxx + A11Eb

3wxxwx + A12Eb
2wwxxwx

+ A13Ebw
2wxxwx + A14Ew

3wxxwx + A15Eb
4w2

xx + A16Eb
3ww2

xx

+ A17Eb
2w2w2

xx + A18Ebw
3w2

xx + A19Ew
4w2

xx (3a)

U = B1pδw + B2pwxδw + B3pw
2
xδw + B4pw

3
xδw + B5pbδwx

+ B6pwδwx + B7pb
2δwxx + B8pbwδwxx + B9pw

2δwxx (3b)

3.5 Identifying Integrands. Substituting the expanded
expressions of integrands in Eq. (3) into the differential-variational
Eq. (1), implementing the variational calculus, deleting linearly
dependent terms, and rearranging terms according to variations
δw, δwx, and δwxx yield∫l
0
(C1Eb + C2Ew

2wxx + C3Ebwx + C4Ewwx + C5Ebwwxx

+ C6Eb
2wxwxx + C7Ebwwxwxx + C8Ew

2wxwxx + C9Eb
3w2

xx

+ C10Eb
2ww2

xx + C11Ebw
2w2

xx + C12Ew
3w2

xx + C13p

+ C14pwx + C15pw
2
x + C16pw

3
x )δw + (C17Eb

3wxx

+ C18Ew
2 + C19Eb

2wwxx + C20Ebw
2wxx + C21Ew

3wxx

+ C22pb + C23pw)δwx + (C24Eb
4wxx + C25Eb

3wx

+ C26Eb
2wwx + C27Ebw

2wx + C28Ew
3wx + C29pb

2

+ C30pbw + C31pw
2)δwxxdx = 0 (4)

in which the coefficients Ci are linear functions of Ai and Bi. Plug-
ging the discrete data captured and various variations prespecified
into Eq. (4), we obtain a set of overdetermined linear algebraic
equations with respect to coefficients Ci(i= 1, 2,…, 31). The total
number of equations is 31 × 4= 124, i.e., the number of cases
(31) times the number of variations (4). Solving the overdetermined

algebraic equations by the pseudo-inverse algorithm and substitut-
ing the coefficients obtained into Eq. (4) yield the differential-
variational equation to be identified, that is,∫l
0
(3.98× 10−10Ew2wxx − 8.58× 10−11Ebwwxx − 9.53× 10−9Eb3w2

xx

+ 5.65× 10−8Eb2ww2
xx − 3.16× 10−7Ebw2w2

xx

+ 1.75× 10−6Ew3w2
xx + 12.00p)δw+ 1.28× 10−7pwδwx

+ (1Eb4wxx + 9.65× 10−10pb2 − 6.47× 10−7pw2)δwxxdx= 0

(5)

Furthermore, sparse optimization is implemented to derive the
sparsest differential-variational equation, which balances the preci-
sion of prediction and the complexity of the model. The weighted
factor ρ is set as 1.00 × 10−8 in this example, and the detailed iter-
ative process, including the values of coefficients and the associated
value of residual at each iterative step, is shown in Fig. 4. Associ-
ated with the sparsest solution, the sparsest differential-variational
equation is finally identified, that is,∫l

0
(12 − 1.152 × 10−7)pδw + 1Eb4wxxδwxxdx = 0 (6)

The associated differential equation can be readily derived by
direct calculus of variations, that is, Eb4wxxxx+ (12− 1.152 ×
10−7) p= 0, which agrees very well with the exact differential equa-
tion E(b4/12)wxxxx+ p= 0 derived from the classical theory of one-
dimensional elastic bodies.
Here, we introduce a relative error to quantify the precision of

identification, which is defined as

Error =

∑
i
(Ci − Cexact

i )2∑
i
(Cexact

i )2
(7)

in which Ci are the coefficients identified, while Cexact
i are the exact

coefficients derived from classical theory. Now, let us investigate
the influence of data noise, sampling interval, and number of
cases on the precision of identification.
Figure 5 depicts the relation between the relative error and

data noise. The noise added in discrete data of response is set as a
Gaussian random variable with zero mean and standard deviation
σ and is measured by its standard deviation. Undoubtedly, the
relative error almost monotonically increases with the standard
deviation of noise. From the noisy data with σ= 1 × 10−5, as
shown in Fig. 6, the proposed method successfully identifies the
equation with high precision; the equation identified is�l
0(12 − 5.09 × 10−3) pδw + 1Eb4wxxδwxxdx = 0 with the relative
error Error= 1.802 × 10−7. This method fails as the standard devia-
tion of noise exceeds 1 × 10−4. The relations of the relative error to
the sampling interval and the number of cases are depicted in Figs. 7
and 8, respectively. Obviously, with the increase of sampling inter-
val, the data amount decreases, and the relative error monotonically
increases. One convincing reason is that for the situation with a
larger sampling interval, the spatial integration evaluated by dis-
crete summation is with lower accuracy. Even from quite scarce
data with a sampling interval of 0.07 m, as shown in Fig. 9, this
method successfully identifies the equation with high precision.

Table 1 Dimensions of system attributes, load, response, its various-order derivatives, and two integrands for bending beam

Basic unit E(= s1) b(= s2) l(= s3) w(δw) wx(δwx) wxx(δwxx) p U0 U

[M] 1 0 0 0 0 0 1 1 1
[L] −1 1 1 1 0 −1 0 1 1
[T] −2 0 0 0 0 0 −2 −2 −2
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Judged from Fig. 8, with the increase in the number of cases, the
relative error decreases, while the precision of identification
increases on the whole. There are 31 to-be-determined coefficients
while the number of variations is set as 4; thus, the least number of
cases should be set as 8 to construct a set of overdetermined alge-
braic equations to determine these 31 coefficients.

3.6 Case II: Simply Supported Column Imposed by
Compressive Load Along Its Axis. Next, we turn to another con-
tinuous system, that is, a simply supported column with a square
section subjected to a compressive force along its axis, as shown

in the second row and the first column in Fig. 2. What we con-
cerned, i.e., the response, is selected as the transverse displacement
v of material points at the middle line as the function of arc length s
measured from one end; the input is the compressive load P; while
the system attributes involve elastic modulus E, length L, and length
of the side of square section b. The discrete data of response can
be captured by numerically solving the differential equation

((d2v/ds2)/
��������������
1 − (dv/ds)2

√
) + (Pv/EI) = 0 [28] with the moment

of inertia of the cross section I= b4/12. For simplicity, the discrete
data of response are collected from the following approximate ana-
lytical solution v(s) = (2

��
2

√
L/π)

�������������
(P/Fcr) − 1

√
× sin (πs/L) with the

Eulerian critical load Fcr= π2EI/L2. The values of system attributes

Fig. 4 Iterative process of sparse optimization for bending beam

Fig. 5 Relative error versus standard deviation of noise for
bending beam

Fig. 6 Noisy data with given standard deviation of noise σ=1×
10−5 for bending beam
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are set as E= 2 × 109 Pa, L= 2 m, and b= 0.05 m. The load P, i.e.,
the compressive force, is equally taken values from the interval
[2573, 2580]N with an increment of 0.5N. Note that the values of
the compressive force are larger than the critical load (in this
case, Fcr= 2570 N) to guarantee the buckling of the column. The
sampling interval is set as 0.001 m. Thus, we capture 15 sets of dis-
crete data (i.e., 15 cases), with each case including 2001 data points.
All discrete data captured are shown in the second row and the
second column in Fig. 2 and in Supplemental Figure 1 available
in the Supplemental Materials on the ASME Digital Collection.
The detailed identifying processes, including extracting all

imposed boundary conditions, prespecifying variations of actual

response, constructing linear expansions of integrands, identifying
coefficients, and further sparsification, are shown in the Supplemen-
tal Materials available in the Supplemental Materials. The sparsest
differential-variational equation identified is expressed as∫L

0
−11.96Pvsδvs + 1Eb4vssδvssds = 0 (8)

The associated differential equation is readily derived as Eb4vssss+
11.96Pvss= 0. If we expand the radical expression in the
denominator by Taylor’s series, the exact differential equation can
be rewritten as

d2v

ds2
1 +

1
2

dv

ds

( )2

+
3
8

dv

ds

( )4

+ . . .

[ ]
+
Pv

EI
= 0 (9)

Obviously, the differential-variational equation identified corre-
sponds to the linearized equation (d2v/ds2)+ (Pv/EI)= 0 with I=
b4/12, and the differential equation associated with the differential-
variational equation identified is just as the second-order spatial
derivative of the linearized equation.
The influences of data noise (measured by the standard deviation

of noise), the sampling interval, and the number of cases on the pre-
cision of identification (measured by the relative error of effective
coefficients) are shown in Supplemental Figures 4, 6, and 8, respec-
tively available in the Supplemental Materials. The relative error
almost monotonically increases with the standard deviation of
noise. From the discrete data with strong noise (set the standard
deviation of noise being 5 × 10−4, for instance, as shown in Supple-
mental Figure 5 available in the Supplemental Materials), the pro-
posed method gives the identified result with high precision.
From Supplemental Figure 6 available in the Supplemental
Materials, the relative error increases with the sampling interval
on the whole. From 15 sets of discrete data with one set only includ-
ing 41 data points (15 × 41= 615 data points in total), as shown in
Supplemental Figure 7 available in the Supplemental Materials, the
identified result still keeps high precision. Undoubtedly, with the
increase in the number of cases, the discrete data that can be utilized
increase, and the relative error decreases monotonically.

3.7 Case III: Constrained Torsion of Simply Supported
Open Thin-Walled Shaft. As a third representative example, let
us consider the constrained torsion of an open thin-walled shaft. Thin-
walled means that the wall thickness of the cross section is much less
than the apparent dimension of the cross section; Open means the
central lines of walls of the cross section do not constitute a simple
closed curve. The shaft in the problem is shown in the third row
and the first column in Fig. 2, while its I-type cross section with all
details is shown in Supplemental Figure 9 available in the
Supplemental Materials . The shaft is simply supported at two end-
points and subjected to a uniformly distributed couple mc along its
axis. The response of interest is the angle of twist of the cross
section φ; the load is the uniformly distributed couple m; the
system attributes include elastic modulus E, shear modulus G,
length of the shaft L, and parameters h, b, t describing the geometrical
characteristic of the cross section. The discrete data of the angle of
twist are captured from the analytical solution of the governing differ-
ential equation GItφ′′ − EIωφ(4) = mc with It =

∑n
i=1 (1/3)hit

3
i , Iω=

(1/24)b3h2t [29], that is, φ=
−mcL

2αGIt
[αx−sinh (αx)]−

mc sinh(αx)
α2GIt

αL

2
− tanh

αL

2

( )[ ]
+

mc

α2GIt

α2x2

2
−cosh(αx)+1

[ ]
with

α2=GIt/EIω. By setting different values of the moment of
the couple, 13 sets of discrete data (as shown in Supplemental
Figure 10 available in the Supplemental Materials) are captured for
subsequent analysis.
Considering that there are too many terms with the same dimen-

sion (such as the dimension of length), we have abandoned dimen-
sion analysis and directly construct the to-be-determined integrands

Fig. 7 Relative error versus sampling interval for bending beam

Fig. 8 Relative error versus number of cases for bending beam

Fig. 9 Discrete data with given sampling interval 0.07 m for
bending beam
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by the linear combinations of power functions of the angle of twist,
their various-order spatial derivatives, and the associated variations.
Please refer to the Supplemental Materials available in the
Supplemental Materials for all details of the implementation. The
sparsest differential-variational equation identified is∫L

0
10.26φxδφx + 3.333φxxδφxx + 1mcδφ dx = 0 (10)

The associated differential equation is readily derived as
3.333ϕxxxx− 10.26ϕxx+mc= 0. For the values of system attributes,
as shown in the Supplemental Materials available in the
Supplemental Materials, the exact governing equation is expressed
as 10.26φ′ ′ − 3.333φ(4)=mc. The differential-variational equation
identified agrees very well with the exact governing equation.
Regarding the relation of the relative error to data noise, sampling

interval, and number of cases, similar conclusions are drawn in Sup-
plemental Figures 13–17 available in the Supplemental Materials.

4 Applications in Discrete Static Systems
Unlikely continuous systems with an infinite degree-of-freedom,

discrete systems possess only a finite degree-of-freedom. From this
viewpoint, discrete static systems can be regarded as a degeneration
of continuous static systems. As a matter of fact, however, in the
process of development of natural science, the pioneers first
observed the phenomena and established the fundamental theories
of static systems and then generalized them to continuous static
systems. In the differential-variational description, as the crucial
distinguishment, the continuous systems involve spatial integration
while the discrete systems do not. In addition, for continuous
systems, the variations of actual responses must satisfy all
imposed boundary conditions and keep sufficient smoothness. In
contrast, for discrete systems, the variations must be compatible
with each other. If we successfully choose generalized coordinates,
i.e., a set of coordinates that are mutually independent and sufficient
to reconstitute all possible configurations of the system in question,
then the variations can be prespecified arbitrarily.
The fundamental assumption is converted to the following: for a

static discrete system, the actual responses described by generalized
coordinates satisfy the differential-variational equation of the form

δU0(s; q) + U(f; s; q; δq) = 0 (11)

Our objective is to identify the explicit expression of the above
equation (i.e., two functions U0, U with respect to system attributes
s, loads f, responses q and its variations δq, with the dimension of
energy) only from the discrete data captured.
We will use a static system of single degree-of-freedom (a link

mechanism in the horizontal plane) as a representative to illustrate
all details of identifying the differential-variational equations of dis-
crete static systems. The link mechanism consists of a mass block
that can slide along a vertical track, four links of equal length,
and a linear spring with an initial length equal to the length of the
links, as shown in the fourth row and the first column in Fig. 2.
Under a vertical force imposed on the mass block, the system sub-
sists equilibrium at some configuration. The configuration of the
system can be uniquely determined by the angle θ between links
and the horizontal line; thus, it is reasonable to select this angle
as the response of interest; the vertical force F is set as the load;
and system attributes include the length l of links (also the initial

length of spring), linear stiffness k of spring, and the mass of
block m; thus, s = [l, k, m].
We set the length l= 0.5 m, linear stiffness k= 3000 N/m, and

mass of block m= 2 kg. The vertical force is taken values from the
range [440, 560] N with a fixed increment of 5 N. Then, 25 values
of the angle are captured for 25 different values of the vertical
force from the analytical relation F= kl(2cosθ− 1) tan θ, as shown
in the fourth row and the second column in Fig. 2. The variations
of the actual response (i.e., the angle) can be prespecified
as arbitrary non-zero small constants. Next, we construct two
to-be-determined functions using or not using the dimension analysis.
First, the dimensions of all quantities are assumed to be known to

us. The dimensions of system attributes, load, response, and
to-be-determined functions expressed by basic units are shown in
Table 2. By the rule of dimensional consistency, we construct
parameter clusters with the dimension of energy and expand two
to-be-determined functions as the linear combinations of associated
parameter clusters, that is,

U0 = A1kl
2 + A2kl

2 sin θ + A3kl
2 cos θ + A4kl

2 sin2 θ

+ A5kl
2 cos2 θ (12a)

U = B1Flδθ + B2Fl sin θδθ + B3Fl cos θδθ + B4Fl sin
2 θδθ

+ B5Fl cos
2 θδθ (12b)

Substituting the expanded expressions in Eqs. (12a) and (12b)
into the differential-variational Eq. (11) and implementing simple
calculus of variations yield

(C1Fl + C2Fl sin θ + C3Fl cos θ + C4Fl sin
2θ + C5Fl cos

2θ

+C6kl
2 cos θ + C7kl

2 sin θ + C8kl
2 sin θ cos θ)δθ = 0

(13)

By plugging the discrete data captured (25 values of the angle
and their associated values of the vertical force) into the above equa-
tion, we establish a set of overdetermined linear algebraic equations
(25 in total) regarding undetermined coefficients Ci(i= 1, · · · 8).
Solving these equations and implementing sparsification yield the
sparsest differential-variational equation, that is,

(− 0.500Fl cos θ − 0.500kl2 sin θ + 1kl2 sin θ cos θ)δθ = 0 (14)

If the dimensions of all quantities, at least part of them, are
assumed to be unknown to us, we can simply construct two func-
tions by the simple and low-order functions of angle θ; for instance,
two functions can be expressed as the following expanded expres-
sions:

U0 = A1θ + A2θ
2 + A3 sin θ + A4 cos θ + A5 sin

2 θ + A6 cos
2 θ

(15a)

U = B1Fδθ + B2Fθδθ + B3Fθ
2δθ + B4F sin θδθ

+ B5F cos θδθ + B6F sin2 θδθ + B7F cos2 θδθ (15b)

According to similar procedures, the sparsest differential-
variational equation is identified, that is,

(3.333 × 10−4F cos θ + 0.500 sin θ + 1 sin θ cos θ)δθ = 0 (16)

The sole difference between these two identified equations con-
sists of the following: the former (Eq. (14)) explicitly includes

Table 2 Dimensions of system attributes, load, response, and two functions for link mechanism

Basic unit m(= s1) l(=s2) k(=s3) θ(δθ) F U0 U

[M] 1 0 1 0 1 1 1
[L] 0 1 0 0 1 2 2
[T] 0 0 −2 0 −2 −2 −2
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system attributes while the latter (Eq. (16)) does not. Obviously, the
identified equations in Eqs. (14) and (16) are almost the same one
with the exact relation between response (the angle) and load (the
force), i.e., F= kl(2 cos θ− 1) tan θ.

5 Conclusions and Discussion
This work is devoted to establishing a data-driven method for

automatically identifying the differential-variational equations
governing the static behaviors of continuous or discrete systems.
The procedure starts from a few sets of discrete data of responses
and loads, as well as values of system attributes if available,
identifies all imposed boundary conditions and prespecifying
variations of actual responses, constructs parameter clusters and
to-be-determined functions, solves the overdetermined equations
and implements sparsification, and finally extracts the sparsest
differential-variational equations. Four numerical examples, includ-
ing three continuous systems and one discrete system, were adopted
to demonstrate its applications and efficacy.
This method is built on a fundamental assumption, i.e., the actual

response of a static system satisfies a differential-variational equa-
tion, while two functions as the determinative of responses
possess the dimension of energy; thus, it undoubtedly belongs to
the field of theory-guided data science. The differential-variational
framework provides some advantages, some of them listed below.
Compared to differential equations typically adopted in equation
identification, differential-variational equations include spatial inte-
gration and only involve lower-order spatial derivatives. The imple-
mentation of spatial integration and the evaluation of only
lower-order spatial derivatives dramatically improve the robustness
of data noise. Furthermore, the arbitrariness of variation selection
helps to increase, even infinitely, the scale of overdetermined equa-
tions, helping the sufficient utilization of information hidden in data
and the improvement of precision of identification.
Nevertheless, there also remain some issues to be addressed. As a

prerequisite of this method, the response of a system in question must
be determined in advance. This is a difficult work but is always over-
looked. Taking a beam as an example, as mentioned above, it essen-
tially occupies a finite three-dimensional space, while its response
(i.e., the vector of displacement) includes three components along
three mutually orthogonal directions. In this work, however, the
response is directly designated as one of these three components,
that is, the transverse displacement (the deflection) guided by the clas-
sical theory of mechanics of materials. Assuming we select inappro-
priate or even incomplete quantities as responses, this method may
generate complex (non-sparse) or even erroneous results. Selecting
appropriate, especially low-dimensional, responses involves another
important topic in science and engineering, that is, dimension reduc-
tion [30]. Our ultimate objective is to automatically select the low-
dimensional described quantities of responses and automatically
extract the governing equations relating the responses to loads, that
is, achieve the total automation of equation identification. This will
be our future work.
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