EN

研究生

首页 > 教育教学 > 研究生

2024-2025春季学期交叉科学中心博士生课程


1. CST4800 计算机科学与技术前沿

课程负责人:吴泰霖

课程学分: 2

课程时间:星期四 15:10-16:55

课程地点:E10-306,云谷校区


This course focuses on the current cutting-edge technologies in the field of computer science and technology, such as Artificial Intelligence, Deep Learning, AI for Science, etc. The lectures are divided into twelve topics, including Frontiers of Deep Learning, Generative Models, Large Models, Reinforcement Learning, Computer Vision and Autonomous Driving, AI + Life Sciences, AI + Scientific Computing, AI + Materials, etc. The content of each topic includes: the development history of theories/technologies, core concepts, underlying ideas and principle mechanisms, the latest research work and technology applications, technology development trends and/or future outlooks, and so on.

课程网站


2. CST5020 优化与应用

课程负责人:肖方舟

课程学分: 3

课程时间:星期四 09:50-12:15

课程地点:E10-305,云谷校区


介绍优化中的概念和方法, 特别是凸优化。 重点在于将应用中的问题转化为优化问题。 为了实现这一目标, 将涵盖优化问题所需的基本分析方法, 如最优性条件、 对偶理论、 替代定理等。 课程的最后三分之一将专注于将我们学到的优化方法深入应用于特定领域, 如控制、 生物工程、 机器学习和金融, 特别邀请这些领域中优化实践的前沿专家作为客座讲师。最好具有一定数学成熟度和对线性代数较为熟悉。

课程网站


3. CST5022 生物系统里的定量原理

课程负责人:何柏毅

课程学分: 3

课程时间:星期五 14:20-16:55

课程地点:E10-212,云谷校区


The course aims to provide a common "ruler" for researchers from diverse backgrounds to reason about biological systems. Topics are organized around broadly applicable themes like how biological systems deal with noise or optimize functions. Model systems span across scales from chemotaxis to proteins and microbiomes. Emphasis is on active learning through building models and analyzing data together.

课程网站




Baidu
map